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1. Printing primes: An example of WEB. The
following program is essentially the same as Edsger
Dijkstra’s “first example of step-wise program composi-
tion,” found on pages 26–39 of his Notes on Structured
Programming,2 but it has been translated into the WEB
language.

[[Double brackets will be used in what follows to en-
close comments relating to WEB itself, because the chief
purpose of this program is to introduce the reader to
the WEB style of documentation. WEB programs are al-
ways broken into small sections, each of which has a
serial number; the present section is number 1.]]

Dijkstra’s program prints a table of the first thou-
sand prime numbers. We shall begin as he did, by re-
ducing the entire program to its top-level description.
[[Every section in a WEB program begins with optional
commentary about that section, and ends with optional
program text for the section. For example, you are now
reading part of the commentary in §1, and the program
text for §1 immediately follows the present paragraph.
Program texts are specifications of PASCAL programs;
they either use PASCAL language directly, or they use
angle brackets to represent PASCAL code that appears
in other sections. For example, the angle-bracket nota-
tion ‘〈Program to print . . . numbers 2 〉’ is WEB’s way of
saying the following: “The PASCAL text to be inserted
here is called ‘Program to print . . . numbers’, and you
can find out all about it by looking at section 2.” One
of the main characteristics of WEB is that different parts
of the program are usually abbreviated, by giving them
such an informal top-level description.]]

〈Program to print the first thousand prime
numbers 2 〉
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2. This program has no input, because we want to
keep it rather simple. The result of the program will be
to produce a list of the first thousand prime numbers,
and this list will appear on the output file.

Since there is no input, we declare the value m =
1000 as a compile-time constant. The program itself is
capable of generating the first m prime numbers for any
positive m, as long as the computer’s finite limitations
are not exceeded.

[[The program text below specifies the “expanded mean-
ing” of ‘〈Program to print . . . numbers 2 〉’; notice that
it involves the top-level descriptions of three other sec-
tions. When those top-level descriptions are replaced
by their expanded meanings, a syntactically correct PAS-
CAL program will be obtained.]]

〈Program to print the first thousand prime
numbers 2 〉 ≡

program print primes (output );
const m = 1000;
〈Other constants of the program 5 〉

var 〈Variables of the program 4 〉
begin 〈Print the first m prime numbers 3 〉;
end.

This code is used in section section 1.
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3. Plan of the program. We shall proceed to fill
out the rest of the program by making whatever deci-
sions seem easiest at each step; the idea will be to strive
for simplicity first and efficiency later, in order to see
where this leads us. The final program may not be op-
timum, but we want it to be reliable, well motivated,
and reasonably fast.

Let us decide at this point to maintain a table that
includes all of the prime numbers that will be gener-
ated, and to separate the generation problem from the
printing problem.

[[The WEB description you are reading once again fol-
lows a pattern that will soon be familiar: A typical
section begins with comments and ends with program
text. The comments motivate and explain noteworthy
features of the program text.]]

〈Print the first m prime numbers 3 〉 ≡
〈Fill table p with the first m prime numbers 11 〉;
〈Print table p 8 〉

This code is used in section section 2.

4. How should table p be represented? Two possi-
bilities suggest themselves: We could construct a suffi-
ciently large array of boolean values in which the kth
entry is true if and only if the number k is prime; or
we could build an array of integers in which the kth
entry is the kth prime number. Let us choose the lat-
ter alternative, by introducing an integer array called
p[1 . . m].

In the documentation below, the notation ‘p[k]’ will
refer to the kth element of array p, while ‘pk’ will refer
to the kth prime number. If the program is correct, p[k]
will either be equal to pk or it will not yet have been
assigned any value.

[[Incidentally, our program will eventually make use of
several more variables as we refine the data structures.
All of the sections where variables are declared will
be called ‘〈Variables of the program 4 〉’; the number
‘4’ in this name refers to the present section, which is
the first section to specify the expanded meaning of
‘〈Variables of the program 〉’. The note ‘See also . . .’
refers to all of the other sections that have the same top-
level description. The expanded meaning of ‘〈Variables
of the program 4 〉’ consists of all the program texts for
this name, not just the text found in §4.]]

〈Variables of the program 4 〉 ≡
p: array [1 . . m] of integer ; { the first m prime

numbers, in increasing order }
See also section sections 7, 12, 15, 17, 23, and 24.

This code is used in section section 2.
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5. The output phase. Let’s work on the second
part of the program first. It’s not as interesting as the
problem of computing prime numbers; but the job of
printing must be done sooner or later, and we might as
well do it sooner, since it will be good to have it done.
[[And it is easier to learn WEB when reading a program
that has comparatively few distracting complications.]]

Since p is simply an array of integers, there is little
difficulty in printing the output, except that we need to
decide upon a suitable output format. Let us print the
table on separate pages, with rr rows and cc columns
per page, where every column is ww character positions
wide. In this case we shall choose rr = 50, cc = 4, and
ww = 10, so that the first 1000 primes will appear on
five pages. The program will not assume that m is an
exact multiple of rr · cc .

〈Other constants of the program 5 〉 ≡
rr = 50; { this many rows will be on each page in

the output }
cc = 4; { this many columns will be on each page

in the output }
ww = 10; { this many character positions will be

used in each column }
See also section section 19.

This code is used in section section 2.
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6. In order to keep this program reasonably free of no-
tations that are uniquely PASCALesque, [[and in order
to illustrate more of the facilities of WEB,]] a few macro
definitions for low-level output instructions are intro-
duced here. All of the output-oriented commands in
the remainder of the program will be stated in terms of
five simple primitives called print string , print integer ,
print entry , new line , and new page .

[[Sections of a WEB program are allowed to contain
macro definitions between the opening comments and
the closing program text. The general format for each
section is actually tripartite: commentary, then defini-
tions, then program. Any of the three parts may be
absent; for example, the present section contains no
program text.]]

[[Simple macros simply substitute a bit of PASCAL
code for an identifier. Parametric macros are similar,
but they also substitute an argument wherever ‘#’ oc-
curs in the macro definition. The first three macro def-
initions here are parametric; the other two are simple.]]

define print string (#) ≡ write (#)
{put a given string into the output file }

define print integer (#) ≡ write (# : 1)
{put a given integer into the output file,
in decimal notation, using only as many
digit positions as necessary }

define print entry (#) ≡ write (# : ww ) { like
print integer , but ww character positions
are filled, inserting blanks at the left }

define new line ≡ write ln { advance to a new line
in the output file }

define new page ≡ page { advance to a new page
in the output file }
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7. Several variables are needed to govern the output
process. When we begin to print a new page, the
variable page number will be the ordinal number of that
page, and page offset will be such that p[page offset ] is
the first prime to be printed. Similarly, p[row offset ]
will be the first prime in a given row.

[[Notice the notation ‘+ ≡’ below; this indicates that
the present section has the same name as a previous
section, so the program text will be appended to some
text that was previously specified.]]
〈Variables of the program 4 〉 +≡
page number : integer ; { one more than the number

of pages printed so far }
page offset : integer ; { index into p for the first entry

on the current page }
row offset : integer ; { index into p for the first entry

in the current row }
c: 0 . . cc ; { runs through the columns in a row }

8. Now that appropriate auxiliary variables have been
introduced, the process of outputting table p almost
writes itself.

〈Print table p 8 〉 ≡
begin page number ← 1; page offset ← 1;
while page offset ≤ m do

begin 〈Output a page of answers 9 〉;
page number ← page number + 1;
page offset ← page offset + rr ∗ cc ;
end;

end
This code is used in section section 3.

9. A simple heading is printed at the top of each page.

〈Output a page of answers 9 〉 ≡
begin print string (´The First ´);
print integer (m);
print string (´ Prime Numbers −−− Page ´);
print integer (page number ); new line ; new line ;

{ there’s a blank line after the heading }
for row offset ← page offset to page offset + rr − 1

do 〈Output a line of answers 10 〉;
new page ;
end

This code is used in section section 8.
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10. The first row will contain

p[1], p[1 + rr ], p[1 + 2 ∗ rr ], . . . ;

a similar pattern holds for each value of the row offset .

〈Output a line of answers 10 〉 ≡
begin for c ← 0 to cc − 1 do

if row offset + c ∗ rr ≤ m then
print entry (p[row offset + c ∗ rr ]);

new line ;
end

This code is used in section section 9.
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11. Generating the primes. The remaining task
is to fill table p with the correct numbers. Let us do
this by generating its entries one at a time: Assuming
that we have computed all primes that are j or less, we
will advance j to the next suitable value, and continue
doing this until the table is completely full.

The program includes a provision to initialize the
variables in certain data structures that will be intro-
duced later.

〈Fill table p with the first m prime numbers 11 〉 ≡
〈 Initialize the data structures 16 〉;
while k < m do

begin 〈 Increase j until it is the next prime
number 14 〉;

k ← k + 1; p[k] ← j;
end

This code is used in section section 3.

12. We need to declare the two variables j and k that
were just introduced.

〈Variables of the program 4 〉 +≡
j: integer ; { all primes ≤ j are in table p }
k: 0 . . m; { this many primes are in table p }

13. So far we haven’t needed to confront the issue of
what a prime number is. But everything else has been
taken care of, so we must delve into a bit of number
theory now.

By definition, a number is called prime if it is an
integer greater than 1 that is not evenly divisible by
any smaller prime number. Stating this another way,
the integer j > 1 is not prime if and only if there exists
a prime number pn < j such that j is a multiple of pn.

Therefore the section of the program that is called
‘〈 Increase j until it is the next prime number 〉’ could be
coded very simply: ‘repeat j ← j+1; 〈Give to j prime
the meaning: j is a prime number 〉; until j prime ’.
And to compute the boolean value j prime , the follow-
ing would suffice: ‘j prime ← true ; for n ← 1 to k do
〈 If p[n] divides j, set j prime ← false 〉’.
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14. However, it is possible to obtain a much more ef-
ficient algorithm by using more facts of number theory.
In the first place, we can speed things up a bit by rec-
ognizing that p1 = 2 and that all subsequent primes
are odd; therefore we can let j run through odd values
only. Our program now takes the following form:

〈 Increase j until it is the next prime number 14 〉 ≡
repeat j ← j + 2;
〈Update variables that depend on j 20 〉;
〈Give to j prime the meaning: j is a prime

number 22 〉;
until j prime

This code is used in section section 11.

15. The repeat loop in the previous section intro-
duces a boolean variable j prime , so that it will not
be necessary to resort to a goto statement. (We are
following Dijkstra,2 not Knuth.3)

〈Variables of the program 4 〉 +≡
j prime : boolean ; { is j a prime number? }

16. In order to make the odd-even trick work, we
must of course initialize the variables j, k, and p[1] as
follows.

〈 Initialize the data structures 16 〉 ≡
j ← 1; k ← 1; p[1] ← 2;

See also section section 18.

This code is used in section section 11.

17. Now we can apply more number theory in order
to obtain further economies. If j is not prime, its
smallest prime factor pn will be

√
j or less. Thus if

we know a number ord such that

p[ord ]2 > j,

and if j is odd, we need only test for divisors in the
set {p[2], . . . , p[ord − 1]}. This is much faster than
testing divisibility by {p[2], . . . , p[k]}, since ord tends
to be much smaller than k. (Indeed, when k is large,
the celebrated “prime number theorem” implies that
the value of ord will be approximately 2

√

k/ln k.)
Let us therefore introduce ord into the data struc-

ture. A moment’s thought makes it clear that ord
changes in a simple way when j increases, and that an-
other variable square facilitates the updating process.

〈Variables of the program 4 〉 +≡
ord : 2 . . ord max ;

{ the smallest index ≥ 2 such that p2
ord > j }

square : integer ; { square = p2
ord }
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18. 〈 Initialize the data structures 16 〉 +≡
ord ← 2; square ← 9;

19. The value of ord will never get larger than a cer-
tain value ord max , which must be chosen sufficiently
large. It turns out that ord never exceeds 30 when
m = 1000.

〈Other constants of the program 5 〉 +≡
ord max = 30; { p2

ord max must exceed pm }

20. When j has been increased by 2, we must increase
ord by unity when j = p2

ord, i.e., when j = square .

〈Update variables that depend on j 20 〉 ≡
if j = square then

begin ord ← ord + 1;
〈Update variables that depend on ord 21 〉;
end

This code is used in section section 14.

21. At this point in the program, ord has just been
increased by unity, and we want to set square := p2

ord.
A surprisingly subtle point arises here: How do we
know that pord has already been computed, i.e., that
ord ≤ k? If there were a gap in the sequence of prime
numbers, such that pk+1 > p2

k for some k, then this
part of the program would refer to the yet-uncomputed
value p[k + 1] unless some special test were made.

Fortunately, there are no such gaps. But no sim-
ple proof of this fact is known. For example, Euclid’s
famous demonstration that there are infinitely many
prime numbers is strong enough to prove only that
pk+1 <= p1 . . . pk + 1. Advanced books on number
theory come to our rescue by showing that much more
is true; for example, “Bertrand’s postulate” states that
pk+1 < 2pk for all k.
〈Update variables that depend on ord 21 〉 ≡

square ← p[ord ] ∗ p[ord ]; { at this point ord ≤ k }
See also section section 25.

This code is used in section section 20.
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22. The inner loop. Our remaining task is to de-
termine whether or not a given integer j is prime. The
general outline of this part of the program is quite sim-
ple, using the value of ord as described above.

〈Give to j prime the meaning: j is a prime
number 22 〉 ≡

n ← 2; j prime ← true ;
while (n < ord ) ∧ j prime do

begin 〈 If p[n] is a factor of j, set
j prime ← false 26 〉;

n ← n + 1;
end

This code is used in section section 14.

23. 〈Variables of the program 4 〉 +≡
n: 2 . . ord max ;

{ runs from 2 to ord when testing divisibility }

24. Let’s suppose that division is very slow or nonex-
istent on our machine. We want to detect nonprime odd
numbers, which are odd multiples of the set of primes
{p2, . . . , pord}.

Since ord max is small, it is reasonable to maintain
an auxiliary table of the smallest odd multiples that
haven’t already been used to show that some j is non-
prime. In other words, our goal is to “knock out” all of
the odd multiples of each pn in the set {p2, . . . , pord},
and one way to do this is to introduce an auxiliary table
that serves as a control structure for a set of knock-out
procedures that are being simulated in parallel. (The
so-called “sieve of Eratosthenes” generates primes by a
similar method, but it knocks out the multiples of each
prime serially.)

The auxiliary table suggested by these considerations
is a mult array that satisfies the following invariant
condition: For 2 ≤ n < ord , mult [n] is an odd multiple
of pn such that mult [n] < j + 2pn.

〈Variables of the program 4 〉 +≡
mult : array [2 . . ord max ] of integer ;

{ runs through multiples of primes }

25. When ord has been increased, we need to ini-
tialize a new element of the mult array. At this point
j = p[ord − 1]2, so there is no need for an elaborate
computation.

〈Update variables that depend on ord 21 〉 +≡
mult [ord − 1] ← j;
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26. The remaining task is straightforward, given the
data structures already prepared. Let us recapitulate
the current situation: The goal is to test whether or
not j is divisible by pn, without actually performing
a division. We know that j is odd, and that mult [n]
is an odd multiple of pn such that mult [n] < j + 2pn.
If mult [n] < j, we can increase mult [n] by 2pn and
the same conditions will hold. On the other hand if
mult [n] ≥ j, the conditions imply that j is divisible
by pn if and only if j = mult [n].
〈 If p[n] is a factor of j, set j prime ← false 26 〉 ≡

while mult [n] < j do
mult [n] ← mult [n] + p[n] + p[n];

if mult [n] = j then j prime ← false
This code is used in section section 22.
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27. Index. Every identifier used in this program is
shown here together with a list of the section numbers
where that identifier appears. The section number is
underlined if the identifier was defined in that section.
However, one-letter identifiers are indexed only at their
point of definition, since such identifiers tend to appear
almost everywhere. [[An index like this is prepared au-
tomatically by the WEB software, and it is appended to
the final section of the program. However, underlining
of section numbers is not automatic; the user is sup-
posed to mark identifiers at their point of definition in
the WEB source file.]]

This index also refers to some of the places where key
elements of the program are treated. For example, the
entries for ‘Output format’ and ‘Page headings’ indi-
cate where details of the output format are discussed.
Several other topics that appear in the documentation
(e.g., ‘Bertrand’s postulate’) have also been indexed.
[[Special instructions within a WEB source file can be
used to insert essentially anything into the index.]]

Bertrand, Joseph, postulate: 21.
boolean : 15.
c: 7.
cc : 5, 7, 8, 10.
Dijkstra, Edsger: 1, 15.
Eratosthenes, sieve of: 24.
false : 13, 26.
integer : 4, 7, 12, 17, 24.
j: 12.
j prime : 13, 14, 15, 22, 26.
k: 12.
Knuth, Donald E.: 15.
m: 2.
mult : 24, 25, 26.
n: 23.
new line : 6, 9, 10.
new page : 6, 9.
ord : 17, 18, 19, 20, 21, 22, 23, 24, 25.
ord max : 17, 19, 23, 24.
output : 2, 6.
output format: 5, 9.
p: 4.
page : 6.
page headings: 9.
page number : 7, 8, 9.
page offset : 7, 8, 9.
prime number, definition of: 13.
print entry : 6, 10.
print integer : 6, 9.
print primes : 2.
print string : 6, 9.
row offset : 7, 9, 10.

rr : 5, 8, 9, 10.
square : 17, 18, 20, 21.
true : 4, 13, 22.
WEB : 1.
write : 6.
write ln : 6.
ww : 5, 6.
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〈Fill table p with the first m prime numbers 11 〉 Used in section section 3.
〈Give to j prime the meaning: j is a prime number 22 〉 Used in section section 14.

〈 If p[n] is a factor of j, set j prime ← false 26 〉 Used in section section 22.

〈 Increase j until it is the next prime number 14 〉 Used in section section 11.

〈 Initialize the data structures 16, 18 〉 Used in section section 11.

〈Other constants of the program 5, 19 〉 Used in section section 2.

〈Output a line of answers 10 〉 Used in section section 9.
〈Output a page of answers 9 〉 Used in section section 8.

〈Print table p 8 〉 Used in section section 3.

〈Print the first m prime numbers 3 〉 Used in section section 2.
〈Program to print the first thousand prime numbers 2 〉 Used in section section 1.

〈Update variables that depend on j 20 〉 Used in section section 14.
〈Update variables that depend on ord 21, 25 〉 Used in section section 20.
〈Variables of the program 4, 7, 12, 15, 17, 23, 24 〉 Used in section section 2.
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